Optical IRSs: Power Scaling Law, Optimal Deployment, and Comparison with Relays

17 Mar 2023  ·  Hedieh Ajam, Marzieh Najafi, Vahid Jamali, Robert Schober ·

The line-of-sight (LOS) requirement of free-space optical (FSO) systems can be relaxed by employing optical relays or optical intelligent reflecting surfaces (IRSs). In this paper, we show that the power reflected from FSO IRSs and collected at the receiver (Rx) lens may scale quadratically or linearly with the IRS size or may saturate at a constant value. We analyze the power scaling law for optical IRSs and unveil its dependence on the wavelength, transmitter (Tx)-to-IRS and IRS-to-Rx distances, beam waist, and Rx lens size. We also consider the impact of linear, quadratic, and focusing phase shift profiles across the IRS on the power collected at the Rx lens for different IRS sizes. Our results reveal that surprisingly the powers received for the different phase shift profiles are identical, unless the IRS operates in the saturation regime. Moreover, IRSs employing the focusing (linear) phase shift profile require the largest (smallest) size to reach the saturation regime. We also compare optical IRSs in different power scaling regimes with optical relays in terms of the outage probability, diversity and coding gains, and optimal placement. Our results show that, at the expense of a higher hardware complexity, relay-assisted FSO links yield a better outage performance at high signal-to-noise-ratios (SNRs), but optical IRSs can achieve a higher performance at low SNRs. Moreover, while it is optimal to place relays equidistant from Tx and Rx, the optimal location of optical IRSs depends on the phase shift profile and the power scaling regime they operate in.

PDF Abstract
No code implementations yet. Submit your code now

Tasks


Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here