Optimal Control for Unmanned Systems with One-way Broadcast Communication

3 Jun 2022  ·  Chao Ge, Ge Chen ·

Unmanned systems (USs) including unmanned aerial vehicles, unmanned underwater vehicles, and unmanned ground vehicles have great application prospects in military and civil fields, among which the process of finding feasible and optimal paths for the agents in USs is a kernel problem. Traditional path finding algorithms are hard to adequately obtain optimal paths in real-time under fast time-varying and poor communication environments. We propose an online optimal control algorithm for USs based on a one-way broadcast communication mode under the assumption of a poor communication environment, mobile targets, radars (or sonar), and missiles (or torpedoes). With the principle of receding horizon control, optimal (or suboptimal) paths are then generated by the approximation theory of neural networks and gradient optimization techniques, with low computation requirements. Also, we give a convergence analysis for our algorithm, and show that each agent can reach its target in finite time under some conditions on agents, targets and radar-missiles. Moreover, simulations demonstrate that the agents in USs can generate optimal (or suboptimal) paths in real time using our algorithm while effectively avoiding collision with other agents or detection by enemy radars.

PDF Abstract
No code implementations yet. Submit your code now

Tasks


Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here