Optimal terminal dimensionality reduction in Euclidean space

22 Oct 2018  ·  Shyam Narayanan, Jelani Nelson ·

Let $\varepsilon\in(0,1)$ and $X\subset\mathbb R^d$ be arbitrary with $|X|$ having size $n>1$. The Johnson-Lindenstrauss lemma states there exists $f:X\rightarrow\mathbb R^m$ with $m = O(\varepsilon^{-2}\log n)$ such that $$ \forall x\in X\ \forall y\in X, \|x-y\|_2 \le \|f(x)-f(y)\|_2 \le (1+\varepsilon)\|x-y\|_2 . $$ We show that a strictly stronger version of this statement holds, answering one of the main open questions of [MMMR18]: "$\forall y\in X$" in the above statement may be replaced with "$\forall y\in\mathbb R^d$", so that $f$ not only preserves distances within $X$, but also distances to $X$ from the rest of space. Previously this stronger version was only known with the worse bound $m = O(\varepsilon^{-4}\log n)$. Our proof is via a tighter analysis of (a specific instantiation of) the embedding recipe of [MMMR18].

PDF Abstract

Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here