Optimally Efficient Sequential Calibration of Binary Classifiers to Minimize Classification Error

19 Aug 2021  ·  Kaan Gokcesu, Hakan Gokcesu ·

In this work, we aim to calibrate the score outputs of an estimator for the binary classification problem by finding an 'optimal' mapping to class probabilities, where the 'optimal' mapping is in the sense that minimizes the classification error (or equivalently, maximizes the accuracy). We show that for the given target variables and the score outputs of an estimator, an 'optimal' soft mapping, which monotonically maps the score values to probabilities, is a hard mapping that maps the score values to $0$ and $1$. We show that for class weighted (where the accuracy for one class is more important) and sample weighted (where the samples' accurate classifications are not equally important) errors, or even general linear losses; this hard mapping characteristic is preserved. We propose a sequential recursive merger approach, which produces an 'optimal' hard mapping (for the observed samples so far) sequentially with each incoming new sample. Our approach has a logarithmic in sample size time complexity, which is optimally efficient.

PDF Abstract
No code implementations yet. Submit your code now

Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here