PAC-Bayesian Transportation Bound

31 May 2019  ·  Kohei Miyaguchi ·

Empirically, the PAC-Bayesian analysis is known to produce tight risk bounds for practical machine learning algorithms. However, in its naive form, it can only deal with stochastic predictors while such predictors are rarely used and deterministic predictors often performs well in practice. To fill this gap, we develop a new generalization error bound, the PAC-Bayesian transportation bound, unifying the PAC-Bayesian analysis and the chaining method in view of the optimal transportation. It is the first PAC-Bayesian bound that relates the risks of any two predictors according to their distance, and capable of evaluating the cost of de-randomization of stochastic predictors faced with continuous loss functions. As an example, we give an upper bound on the de-randomization cost of spectrally normalized neural networks (NNs) to evaluate how much randomness contributes to the generalization of NNs.

PDF Abstract
No code implementations yet. Submit your code now

Tasks


Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here