Parkinson's Disease Classification Using Contrastive Graph Cross-View Learning with Multimodal Fusion of SPECT Images and Clinical Features

25 Nov 2023  ·  Jun-En Ding, Chien-Chin Hsu, Feng Liu ·

Parkinson's Disease (PD) affects millions globally, impacting movement. Prior research utilized deep learning for PD prediction, primarily focusing on medical images, neglecting the data's underlying manifold structure. This work proposes a multimodal approach encompassing both image and non-image features, leveraging contrastive cross-view graph fusion for PD classification. We introduce a novel multimodal co-attention module, integrating embeddings from separate graph views derived from low-dimensional representations of images and clinical features. This enables more robust and structured feature extraction for improved multi-view data analysis. Additionally, a simplified contrastive loss-based fusion method is devised to enhance cross-view fusion learning. Our graph-view multimodal approach achieves an accuracy of 91% and an area under the receiver operating characteristic curve (AUC) of 92.8% in five-fold cross-validation. It also demonstrates superior predictive capabilities on non-image data compared to solely machine learning-based methods.

PDF Abstract
No code implementations yet. Submit your code now

Tasks


Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here