Partitioning into Expanders

12 Sep 2013  ·  Shayan Oveis Gharan, Luca Trevisan ·

Let G=(V,E) be an undirected graph, lambda_k be the k-th smallest eigenvalue of the normalized laplacian matrix of G. There is a basic fact in algebraic graph theory that lambda_k > 0 if and only if G has at most k-1 connected components. We prove a robust version of this fact. If lambda_k>0, then for some 1\leq \ell\leq k-1, V can be {\em partitioned} into l sets P_1,\ldots,P_l such that each P_i is a low-conductance set in G and induces a high conductance induced subgraph. In particular, \phi(P_i)=O(l^3\sqrt{\lambda_l}) and \phi(G[P_i]) >= \lambda_k/k^2). We make our results algorithmic by designing a simple polynomial time spectral algorithm to find such partitioning of G with a quadratic loss in the inside conductance of P_i's. Unlike the recent results on higher order Cheeger's inequality [LOT12,LRTV12], our algorithmic results do not use higher order eigenfunctions of G. If there is a sufficiently large gap between lambda_k and lambda_{k+1}, more precisely, if \lambda_{k+1} >= \poly(k) lambda_{k}^{1/4} then our algorithm finds a k partitioning of V into sets P_1,...,P_k such that the induced subgraph G[P_i] has a significantly larger conductance than the conductance of P_i in G. Such a partitioning may represent the best k clustering of G. Our algorithm is a simple local search that only uses the Spectral Partitioning algorithm as a subroutine. We expect to see further applications of this simple algorithm in clustering applications.

PDF Abstract
No code implementations yet. Submit your code now

Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here