PatchAD: A Lightweight Patch-based MLP-Mixer for Time Series Anomaly Detection

18 Jan 2024  ·  Zhijie Zhong, Zhiwen Yu, Yiyuan Yang, Weizheng Wang, Kaixiang Yang ·

Anomaly detection in time series analysis is a pivotal task, yet it poses the challenge of discerning normal and abnormal patterns in label-deficient scenarios. While prior studies have largely employed reconstruction-based approaches, which limits the models' representational capacities. Moreover, existing deep learning-based methods are not sufficiently lightweight. Addressing these issues, we present PatchAD, our novel, highly efficient multiscale patch-based MLP-Mixer architecture that utilizes contrastive learning for representation extraction and anomaly detection. With its four distinct MLP Mixers and innovative dual project constraint module, PatchAD mitigates potential model degradation and offers a lightweight solution, requiring only $3.2$MB. Its efficacy is demonstrated by state-of-the-art results across $9$ datasets sourced from different application scenarios, outperforming over $30$ comparative algorithms. PatchAD significantly improves the classical F1 score by $50.5\%$, the Aff-F1 score by $7.8\%$, and the AUC by $10.0\%$. The code is publicly available. \url{https://github.com/EmorZz1G/PatchAD}

PDF Abstract

Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods