Performance Prediction and Optimization of Solar Water Heater via a Knowledge-Based Machine Learning Method

6 Oct 2017  ·  Hao Li, Zhijian Liu ·

Measuring the performance of solar energy and heat transfer systems requires a lot of time, economic cost and manpower. Meanwhile, directly predicting their performance is challenging due to the complicated internal structures. Fortunately, a knowledge-based machine learning method can provide a promising prediction and optimization strategy for the performance of energy systems. In this Chapter, the authors will show how they utilize the machine learning models trained from a large experimental database to perform precise prediction and optimization on a solar water heater (SWH) system. A new energy system optimization strategy based on a high-throughput screening (HTS) process is proposed. This Chapter consists of: i) Comparative studies on varieties of machine learning models (artificial neural networks (ANNs), support vector machine (SVM) and extreme learning machine (ELM)) to predict the performances of SWHs; ii) Development of an ANN-based software to assist the quick prediction and iii) Introduction of a computational HTS method to design a high-performance SWH system.

PDF Abstract
No code implementations yet. Submit your code now

Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here