Post-variational quantum neural networks

20 Jul 2023  ·  Po-Wei Huang, Patrick Rebentrost ·

Hybrid quantum-classical computing in the noisy intermediate-scale quantum (NISQ) era with variational algorithms can exhibit barren plateau issues, causing difficult convergence of gradient-based optimization techniques. In this paper, we discuss "post-variational strategies", which shift tunable parameters from the quantum computer to the classical computer, opting for ensemble strategies when optimizing quantum models. We discuss various strategies and design principles for constructing individual quantum circuits, where the resulting ensembles can be optimized with convex programming. Further, we discuss architectural designs of post-variational quantum neural networks and analyze the propagation of estimation errors throughout such neural networks. Finally, we show that empirically, post-variational quantum neural networks using our architectural designs can potentially provide better results than variational algorithms and performance comparable to that of two-layer neural networks.

PDF Abstract
No code implementations yet. Submit your code now

Datasets


Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here