Power Law Trends in Speedrunning and Machine Learning

19 Apr 2023  ·  Ege Erdil, Jaime Sevilla ·

We find that improvements in speedrunning world records follow a power law pattern. Using this observation, we answer an outstanding question from previous work: How do we improve on the baseline of predicting no improvement when forecasting speedrunning world records out to some time horizon, such as one month? Using a random effects model, we improve on this baseline for relative mean square error made on predicting out-of-sample world record improvements as the comparison metric at a $p < 10^{-5}$ significance level. The same set-up improves \textit{even} on the ex-post best exponential moving average forecasts at a $p = 0.15$ significance level while having access to substantially fewer data points. We demonstrate the effectiveness of this approach by applying it to Machine Learning benchmarks and achieving forecasts that exceed a baseline. Finally, we interpret the resulting model to suggest that 1) ML benchmarks are far from saturation and 2) sudden large improvements in Machine Learning are unlikely but cannot be ruled out.

PDF Abstract
No code implementations yet. Submit your code now

Tasks


Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here