Paper

Pre-Training a Graph Recurrent Network for Language Representation

Transformer-based pre-trained models have gained much advance in recent years, becoming one of the most important backbones in natural language processing. Recent work shows that the attention mechanism inside Transformer may not be necessary, both convolutional neural networks and multi-layer perceptron based models have also been investigated as Transformer alternatives. In this paper, we consider a graph recurrent network for language model pre-training, which builds a graph structure for each sequence with local token-level communications, together with a sentence-level representation decoupled from other tokens. The original model performs well in domain-specific text classification under supervised training, however, its potential in learning transfer knowledge by self-supervised way has not been fully exploited. We fill this gap by optimizing the architecture and verifying its effectiveness in more general language understanding tasks, for both English and Chinese languages. As for model efficiency, instead of the quadratic complexity in Transformer-based models, our model has linear complexity and performs more efficiently during inference. Moreover, we find that our model can generate more diverse outputs with less contextualized feature redundancy than existing attention-based models.

Results in Papers With Code
(↓ scroll down to see all results)