Provably Efficient Primal-Dual Reinforcement Learning for CMDPs with Non-stationary Objectives and Constraints

28 Jan 2022  ·  Yuhao Ding, Javad Lavaei ·

We consider primal-dual-based reinforcement learning (RL) in episodic constrained Markov decision processes (CMDPs) with non-stationary objectives and constraints, which plays a central role in ensuring the safety of RL in time-varying environments. In this problem, the reward/utility functions and the state transition functions are both allowed to vary arbitrarily over time as long as their cumulative variations do not exceed certain known variation budgets. Designing safe RL algorithms in time-varying environments is particularly challenging because of the need to integrate the constraint violation reduction, safe exploration, and adaptation to the non-stationarity. To this end, we identify two alternative conditions on the time-varying constraints under which we can guarantee the safety in the long run. We also propose the \underline{P}eriodically \underline{R}estarted \underline{O}ptimistic \underline{P}rimal-\underline{D}ual \underline{P}roximal \underline{P}olicy \underline{O}ptimization (PROPD-PPO) algorithm that can coordinate with both two conditions. Furthermore, a dynamic regret bound and a constraint violation bound are established for the proposed algorithm in both the linear kernel CMDP function approximation setting and the tabular CMDP setting under two alternative conditions. This paper provides the first provably efficient algorithm for non-stationary CMDPs with safe exploration.

PDF Abstract

Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here