Quantum AI for Alzheimer's disease early screening

1 May 2024  ·  Giacomo Cappiello, Filippo Caruso ·

Quantum machine learning is a new research field combining quantum information science and machine learning. Quantum computing technologies seem to be particularly well suited to solving problems in the health sector in an efficient way, because they may deal with large datasets more efficiently than classical AI. Alzheimer's disease is a neurodegenerative brain disorder that mostly affects elderly people, causing important cognitive impairments. It is the most common cause of dementia and it has an effect on memory, thought, learning abilities and movement control. This type of disease has no cure, consequently an early diagnosis is fundamental for reducing its impact. The analysis of handwriting can be effective for diagnosing, as many researches have conjectured. The DARWIN (Diagnosis AlzheimeR WIth haNdwriting) dataset contains handwriting samples from people affected by Alzheimer's disease and a group of healthy people. Here we apply quantum AI to this use-case. In particular, we use this dataset to test kernel methods for classification task and compare their performances with the ones obtained via quantum machine learning methods. We find that quantum and classical algorithms achieve similar performances and in some cases quantum methods perform even better. Our results pave the way for future new quantum machine learning applications in early-screening diagnostics in the healthcare domain.

PDF Abstract
No code implementations yet. Submit your code now

Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here