Quantum-classical correspondence of work distributions for initial states with quantum coherence

10 Apr 2019  ·  Pan Rui, Fei Zhaoyu, Qiu Tian, Zhang Jing-Ning, Quan H. T. ·

The standard definition of quantum fluctuating work is based on the two-projective energy measurement, which however does not apply to systems with initial quantum coherence because the first projective energy measurement destroys the initial coherence, and affects the subsequent evolution of the system. To address this issue, several alternative definitions, such as those based on the full counting statistics and the Margenau-Hill distribution, have been proposed recently... These definitions seem ad hoc because justifications for them are still lacking. In the current study, by utilizing the quantum Feynman-Kac formula and the phase space formulation of quantum mechanics, we prove that the leading order of work distributions is equal to the classical work distribution. Thus we prove the validity of the quantum-classical correspondence of work distributions for initial states with quantum coherence, and provide some justification for those definitions of work. We use an exactly solvable model of the linearly dragged harmonic oscillator to demonstrate our main results. read more

PDF Abstract
No code implementations yet. Submit your code now


Quantum Physics Statistical Mechanics