Shuffled Multi-Channel Sparse Signal Recovery

14 Dec 2022  ·  Taulant Koka, Manolis C. Tsakiris, Michael Muma, Benjamín Béjar Haro ·

Mismatches between samples and their respective channel or target commonly arise in several real-world applications. For instance, whole-brain calcium imaging of freely moving organisms, multiple-target tracking or multi-person contactless vital sign monitoring may be severely affected by mismatched sample-channel assignments. To systematically address this fundamental problem, we pose it as a signal reconstruction problem where we have lost correspondences between the samples and their respective channels. Assuming that we have a sensing matrix for the underlying signals, we show that the problem is equivalent to a structured unlabeled sensing problem, and establish sufficient conditions for unique recovery. To the best of our knowledge, a sampling result for the reconstruction of shuffled multi-channel signals has not been considered in the literature and existing methods for unlabeled sensing cannot be directly applied. We extend our results to the case where the signals admit a sparse representation in an overcomplete dictionary (i.e., the sensing matrix is not precisely known), and derive sufficient conditions for the reconstruction of shuffled sparse signals. We propose a robust reconstruction method that combines sparse signal recovery with robust linear regression for the two-channel case. The performance and robustness of the proposed approach is illustrated in an application related to whole-brain calcium imaging. The proposed methodology can be generalized to sparse signal representations other than the ones considered in this work to be applied in a variety of real-world problems with imprecise measurement or channel assignment.

PDF Abstract
No code implementations yet. Submit your code now

Tasks


Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods