Reinforcement Learning Based Temporal Logic Control with Soft Constraints Using Limit-deterministic Generalized Buchi Automata

25 Jan 2021  ·  Mingyu Cai, Shaoping Xiao, Zhijun Li, Zhen Kan ·

This paper studies the control synthesis of motion planning subject to uncertainties. The uncertainties are considered in robot motions and environment properties, giving rise to the probabilistic labeled Markov decision process (PL-MDP). A Model-Free Reinforcement The learning (RL) method is developed to generate a finite-memory control policy to satisfy high-level tasks expressed in linear temporal logic (LTL) formulas. Due to uncertainties and potentially conflicting tasks, this work focuses on infeasible LTL specifications, where a relaxed LTL constraint is developed to allow the agent to revise its motion plan and take violations of original tasks into account for partial satisfaction. And a novel automaton is developed to improve the density of accepting rewards and enable deterministic policies. We proposed an RL framework with rigorous analysis that is guaranteed to achieve multiple objectives in decreasing order: 1) satisfying the acceptance condition of relaxed product MDP and 2) reducing the violation cost over long-term behaviors. We provide simulation and experimental results to validate the performance.

PDF Abstract
No code implementations yet. Submit your code now

Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here