Reinforcement Learning-driven Information Seeking: A Quantum Probabilistic Approach

5 Aug 2020  ·  Amit Kumar Jaiswal, Haiming Liu, Ingo Frommholz ·

Understanding an information forager's actions during interaction is very important for the study of interactive information retrieval. Although information spread in uncertain information space is substantially complex due to the high entanglement of users interacting with information objects~(text, image, etc.). However, an information forager, in general, accompanies a piece of information (information diet) while searching (or foraging) alternative contents, typically subject to decisive uncertainty. Such types of uncertainty are analogous to measurements in quantum mechanics which follow the uncertainty principle. In this paper, we discuss information seeking as a reinforcement learning task. We then present a reinforcement learning-based framework to model forager exploration that treats the information forager as an agent to guide their behaviour. Also, our framework incorporates the inherent uncertainty of the foragers' action using the mathematical formalism of quantum mechanics.

PDF Abstract

Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here