Reinforcement learning for traffic signal control in hybrid action space

23 Nov 2022  ·  Haoqing Luo, Sheng Jin ·

The prevailing reinforcement-learning-based traffic signal control methods are typically staging-optimizable or duration-optimizable, depending on the action spaces. In this paper, we propose a novel control architecture, TBO, which is based on hybrid proximal policy optimization. To the best of our knowledge, TBO is the first RL-based algorithm to implement synchronous optimization of the staging and duration. Compared to discrete and continuous action spaces, hybrid action space is a merged search space, in which TBO better implements the trade-off between frequent switching and unsaturated release. Experiments are given to demonstrate that TBO reduces the queue length and delay by 13.78% and 14.08% on average, respectively, compared to the existing baselines. Furthermore, we calculate the Gini coefficients of the right-of-way to indicate TBO does not harm fairness while improving efficiency.

PDF Abstract

Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here