Rethinking Barely-Supervised Segmentation from an Unsupervised Domain Adaptation Perspective

16 May 2024  ·  Zhiqiang Shen, Peng Cao, Junming Su, Jinzhu Yang, Osmar R. Zaiane ·

This paper investigates an extremely challenging problem, barely-supervised medical image segmentation (BSS), where the training dataset comprises limited labeled data with only single-slice annotations and numerous unlabeled images. Currently, state-of-the-art (SOTA) BSS methods utilize a registration-based paradigm, depending on image registration to propagate single-slice annotations into volumetric pseudo labels for constructing a complete labeled set. However, this paradigm has a critical limitation: the pseudo labels generated by image registration are unreliable and noisy. Motivated by this, we propose a new perspective: training a model using only single-annotated slices as the labeled set without relying on image registration. To this end, we formulate BSS as an unsupervised domain adaptation (UDA) problem. Specifically, we first design a novel noise-free labeled data construction algorithm (NFC) for slice-to-volume labeled data synthesis, which may result in a side effect: domain shifts between the synthesized images and the original images. Then, a frequency and spatial mix-up strategy (FSX) is further introduced to mitigate the domain shifts for UDA. Extensive experiments demonstrate that our method provides a promising alternative for BSS. Remarkably, the proposed method with only one labeled slice achieves an 80.77% dice score on left atrial segmentation, outperforming the SOTA by 61.28%. The code will be released upon the publication of this paper.

PDF Abstract

Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here