Revealing the origins of shear band activity and boundary strengthening in polygrain-like architected materials

4 Nov 2020  ·  Chen Liu, Jedsada Lertthanasarn, Minh-Son Pham ·

A recent report on successful employment of the grain boundary strengthening to design extraordinarily damage-tolerant architected materials (i.e. meta-crystals) necessitates fundamental studies to understand the underlying mechanisms responsible for the toughening and high performance of meta-crystals. Such understanding will enable greater confidence and control in developing high performing and smart architected materials. In this study, buckling of lattice struts in single crystal-like meta-crystals was firstly analysed to reveal its role in shear band activities. Shear band systems of singly oriented meta-crystals were also identified to provide a solid basis for predicting and controlling the shearing behaviour in polygrain-like meta-crystals. The boundary-induced strengthening effects in meta-crystals was found to relate to the boundary type and coherency as they govern the transmission of shear bands across meta-grain boundaries. The obtained insights in this study provide crucial knowledge in developing high strength architected materials with great capacity in controlling the mechanical strength and damage path.

PDF Abstract
No code implementations yet. Submit your code now

Categories


Materials Science