A Test Statistic Estimation-based Approach for Establishing Self-interpretable CNN-based Binary Classifiers

13 Mar 2023  ·  Sourya Sengupta, Mark A. Anastasio ·

Interpretability is highly desired for deep neural network-based classifiers, especially when addressing high-stake decisions in medical imaging. Commonly used post-hoc interpretability methods have the limitation that they can produce plausible but different interpretations of a given model, leading to ambiguity about which one to choose. To address this problem, a novel decision-theory-inspired approach is investigated to establish a self-interpretable model, given a pre-trained deep binary black-box medical image classifier. This approach involves utilizing a self-interpretable encoder-decoder model in conjunction with a single-layer fully connected network with unity weights. The model is trained to estimate the test statistic of the given trained black-box deep binary classifier to maintain a similar accuracy. The decoder output image, referred to as an equivalency map, is an image that represents a transformed version of the to-be-classified image that, when processed by the fixed fully connected layer, produces the same test statistic value as the original classifier. The equivalency map provides a visualization of the transformed image features that directly contribute to the test statistic value and, moreover, permits quantification of their relative contributions. Unlike the traditional post-hoc interpretability methods, the proposed method is self-interpretable, quantitative. Detailed quantitative and qualitative analyses have been performed with three different medical image binary classification tasks.

PDF Abstract

Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here