RL + Model-based Control: Using On-demand Optimal Control to Learn Versatile Legged Locomotion

29 May 2023  ·  Dongho Kang, Jin Cheng, Miguel Zamora, Fatemeh Zargarbashi, Stelian Coros ·

This paper presents a control framework that combines model-based optimal control and reinforcement learning (RL) to achieve versatile and robust legged locomotion. Our approach enhances the RL training process by incorporating on-demand reference motions generated through finite-horizon optimal control, covering a broad range of velocities and gaits. These reference motions serve as targets for the RL policy to imitate, leading to the development of robust control policies that can be learned with reliability. Furthermore, by utilizing realistic simulation data that captures whole-body dynamics, RL effectively overcomes the inherent limitations in reference motions imposed by modeling simplifications. We validate the robustness and controllability of the RL training process within our framework through a series of experiments. In these experiments, our method showcases its capability to generalize reference motions and effectively handle more complex locomotion tasks that may pose challenges for the simplified model, thanks to RL's flexibility. Additionally, our framework effortlessly supports the training of control policies for robots with diverse dimensions, eliminating the necessity for robot-specific adjustments in the reward function and hyperparameters.

PDF Abstract
No code implementations yet. Submit your code now

Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here