Robust Constraint Satisfaction in Data-Driven MPC

15 Mar 2020  ·  Julian Berberich, Johannes Köhler, Matthias A. Müller, Frank Allgöwer ·

We propose a purely data-driven model predictive control (MPC) scheme to control unknown linear time-invariant systems with guarantees on stability and constraint satisfaction in the presence of noisy data. The scheme predicts future trajectories based on data-dependent Hankel matrices, which span the full system behavior if the input is persistently exciting. This paper extends previous work on data-driven MPC by including a suitable constraint tightening which ensures that the closed-loop trajectory satisfies desired pointwise-in-time output constraints. Furthermore, we provide estimation procedures to compute system constants related to controllability and observability, which are required to implement the constraint tightening. The practicality of the proposed approach is illustrated via a numerical example.

PDF Abstract
No code implementations yet. Submit your code now

Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here