Estimation of Field Inhomogeneity Map Following Magnitude-Based Ambiguity-Resolved Water-Fat Separation

PURPOSE: To extend magnitude-based PDFF (Proton Density Fat Fraction) and $R_2^*$ mapping with resolved water-fat ambiguity to calculate field inhomogeneity (field map) using the phase images. THEORY: The estimation is formulated in matrix form, resolving the field map in a least-squares sense. PDFF and $R_2^*$ from magnitude fitting may be updated using the estimated field maps. METHODS: The limits of quantification of our voxel-independent implementation were assessed. Bland-Altman was used to compare PDFF and field maps from our method against a reference complex-based method on 152 UK Biobank subjects (1.5 T Siemens). A separate acquisition (3 T Siemens) presenting field inhomogeneities was also used. RESULTS: The proposed field mapping was accurate beyond double the complex-based limit range. High agreement was obtained between the proposed method and the reference in UK Biobank (PDFF bias = -0.03 %, LoA (limits of agreement) [-0.1,0.1] %; Field map bias = 0.06 Hz, LoA = [-0.2,0.3] Hz). Robust field mapping was observed at 3 T, for inhomogeneities over 300 Hz including rapid variation across edges. CONCLUSION: Field mapping following magnitude-based water-fat separation with resolved water-fat ambiguity was demonstrated in-vivo and showed potential at high field.

PDF Abstract
No code implementations yet. Submit your code now

Tasks


Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here