Robust W-GAN-Based Estimation Under Wasserstein Contamination

20 Jan 2021  ·  Zheng Liu, Po-Ling Loh ·

Robust estimation is an important problem in statistics which aims at providing a reasonable estimator when the data-generating distribution lies within an appropriately defined ball around an uncontaminated distribution. Although minimax rates of estimation have been established in recent years, many existing robust estimators with provably optimal convergence rates are also computationally intractable. In this paper, we study several estimation problems under a Wasserstein contamination model and present computationally tractable estimators motivated by generative adversarial networks (GANs). Specifically, we analyze properties of Wasserstein GAN-based estimators for location estimation, covariance matrix estimation, and linear regression and show that our proposed estimators are minimax optimal in many scenarios. Finally, we present numerical results which demonstrate the effectiveness of our estimators.

PDF Abstract
No code implementations yet. Submit your code now

Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods