Robust Waveform Design for Integrated Sensing and Communication

31 Oct 2023  ·  Shixiong Wang, Wei Dai, Haowei Wang, Geoffrey Ye Li ·

Integrated sensing and communication (ISAC), which enables hardware, resources (e.g., spectra), and waveforms sharing, is becoming a key feature in future-generation communication systems. This paper investigates robust waveform design for ISAC systems when the underlying true communication channels (e.g. time-selective ones) are not accurately known. With uncertainties in nominal communication channel models, the nominally-estimated communication performance may be not achievable in practice; i.e., the communication performance of ISAC systems cannot be guaranteed. Therefore, we formulate robust waveform design problems by studying the worst-case channels and prove that the robustly-estimated performance is guaranteed to be attainable in real-world operation. As a consequence, the reliability of ISAC systems in terms of communication performance is improved. The robust waveform design problems are shown to be non-convex, non-differentiable, and high-dimensional, which cannot be solved using existing optimization techniques. Therefore, we develop a computationally-efficient and globally-optimal algorithm to solve them. Simulation results show that the robustly-estimated communication performance can be ensured to be practically reachable while the nominally-estimated performance cannot, which validates the value of robust design.

PDF Abstract

Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here