Robustness Guarantees for Bayesian Inference with Gaussian Processes

17 Sep 2018  ·  Luca Cardelli, Marta Kwiatkowska, Luca Laurenti, Andrea Patane ·

Bayesian inference and Gaussian processes are widely used in applications ranging from robotics and control to biological systems. Many of these applications are safety-critical and require a characterization of the uncertainty associated with the learning model and formal guarantees on its predictions. In this paper we define a robustness measure for Bayesian inference against input perturbations, given by the probability that, for a test point and a compact set in the input space containing the test point, the prediction of the learning model will remain $\delta-$close for all the points in the set, for $\delta>0.$ Such measures can be used to provide formal guarantees for the absence of adversarial examples. By employing the theory of Gaussian processes, we derive tight upper bounds on the resulting robustness by utilising the Borell-TIS inequality, and propose algorithms for their computation. We evaluate our techniques on two examples, a GP regression problem and a fully-connected deep neural network, where we rely on weak convergence to GPs to study adversarial examples on the MNIST dataset.

PDF Abstract

Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here