Safety-Critical Control under Multiple State and Input Constraints and Application to Fixed-Wing UAV

8 Aug 2023  ·  Donggeon David Oh, Dongjae Lee, H. Jin Kim ·

This study presents a framework to guarantee safety for a class of second-order nonlinear systems under multiple state and input constraints. To facilitate real-world applications, a safety-critical controller must consider multiple constraints simultaneously, while being able to impose general forms of constraints designed for various tasks (e.g., obstacle avoidance). With this in mind, we first devise a zeroing control barrier function (ZCBF) using a newly proposed nominal evading maneuver. By designing the nominal evading maneuver to 1) be continuously differentiable, 2) satisfy input constraints, and 3) be capable of handling other state constraints, we deduce an ultimate invariant set, a subset of the safe set that can be rendered forward invariant with admissible control inputs. Thanks to the development of the ultimate invariant set, we then propose a safety-critical controller, which is a computationally tractable one-step model predictive controller (MPC) with guaranteed recursive feasibility. We validate the proposed framework in simulation, where a fixed-wing UAV tracks a circular trajectory while satisfying multiple safety constraints including collision avoidance, bounds on flight speed and flight path angle, and input constraints.

PDF Abstract
No code implementations yet. Submit your code now

Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods