scRNA-seq Data Clustering by Cluster-aware Iterative Contrastive Learning

27 Dec 2023  ·  Weikang Jiang, Jinxian Wang, Jihong Guan, Shuigeng Zhou ·

Single-cell RNA sequencing (scRNA-seq) enables researchers to analyze gene expression at single-cell level. One important task in scRNA-seq data analysis is unsupervised clustering, which helps identify distinct cell types, laying down the foundation for other downstream analysis tasks. In this paper, we propose a novel method called Cluster-aware Iterative Contrastive Learning (CICL in short) for scRNA-seq data clustering, which utilizes an iterative representation learning and clustering framework to progressively learn the clustering structure of scRNA-seq data with a cluster-aware contrastive loss. CICL consists of a Transformer encoder, a clustering head, a projection head and a contrastive loss module. First, CICL extracts the feature vectors of the original and augmented data by the Transformer encoder. Then, it computes the clustering centroids by K-means and employs the student t-distribution to assign pseudo-labels to all cells in the clustering head. The projection-head uses a Multi-Layer Perceptron (MLP) to obtain projections of the augmented data. At last, both pseudo-labels and projections are used in the contrastive loss to guide the model training. Such a process goes iteratively so that the clustering result becomes better and better. Extensive experiments on 25 real world scRNA-seq datasets show that CICL outperforms the SOTA methods. Concretely, CICL surpasses the existing methods by from 14% to 280%, and from 5% to 133% on average in terms of performance metrics ARI and NMI respectively.

PDF Abstract

Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods