Self-supervised learning -- A way to minimize time and effort for precision agriculture?

Machine learning, satellites or local sensors are key factors for a sustainable and resource-saving optimisation of agriculture and proved its values for the management of agricultural land. Up to now, the main focus was on the enlargement of data which were evaluated by means of supervised learning methods. Nevertheless, the need for labels is also a limiting and time-consuming factor, while in contrast, ongoing technological development is already providing an ever-increasing amount of unlabeled data. Self-supervised learning (SSL) could overcome this limitation and incorporate existing unlabeled data. Therefore, a crop type data set was utilized to conduct experiments with SSL and compare it to supervised methods. A unique feature of our data set from 2016 to 2018 was a divergent climatological condition in 2018 that reduced yields and affected the spectral fingerprint of the plants. Our experiments focused on predicting 2018 using SLL without or a few labels to clarify whether new labels should be collected for an unknown year. Despite these challenging conditions, the results showed that SSL contributed to higher accuracies. We believe that the results will encourage further improvements in the field of precision farming, why the SSL framework and data will be published (Marszalek, 2021).

PDF Abstract

Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here