Sharp Global Guarantees for Nonconvex Low-Rank Matrix Recovery in the Overparameterized Regime

21 Apr 2021  ·  Richard Y. Zhang ·

We prove that it is possible for nonconvex low-rank matrix recovery to contain no spurious local minima when the rank of the unknown ground truth $r^{\star}<r$ is strictly less than the search rank $r$, and yet for the claim to be false when $r^{\star}=r$. Under the restricted isometry property (RIP), we prove, for the general overparameterized regime with $r^{\star}\le r$, that an RIP constant of $\delta<1/(1+\sqrt{r^{\star}/r})$ is sufficient for the inexistence of spurious local minima, and that $\delta<1/(1+1/\sqrt{r-r^{\star}+1})$ is necessary due to existence of counterexamples. Without an explicit control over $r^{\star}\le r$, an RIP constant of $\delta<1/2$ is both necessary and sufficient for the exact recovery of a rank-$r$ ground truth. But if the ground truth is known a priori to have $r^{\star}=1$, then the sharp RIP threshold for exact recovery is improved to $\delta<1/(1+1/\sqrt{r})$.

PDF Abstract
No code implementations yet. Submit your code now

Tasks


Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here