Short and Long Range Population Dynamics of the Monarch

16 Dec 2011  ·  Komi Messan, Kyle Smith, Shawn Tsosie, Shuchen Zhu, Sergei Suslov ·

The monarch butterfly annually migrates from central Mexico to southern Canada. During recent decades, its population has been reduced due to human interaction with their habitat. We examine the effect of herbicide usage on the monarch butterfly's population by creating a system of linear and non-linear ordinary differential equations that describe the interaction between the monarch's population and its environment at various stages of migration: spring migration, summer loitering, and fall migration. The model has various stages that are used to describe the dynamics of the monarch butterfly population over multiple generations. In Stage 1, we propose a system of coupled ordinary differential equations that model the populations of the monarch butterflies and larvae during spring migration. In Stage 2, we propose a predator-prey model with age structure to model the population dynamics at the summer breeding site. In Stages 3 and 4, we propose exponential decay functions to model the monarch butterfly's fall migration to central Mexico and their time at the overwintering site. The model is used to analyze the long-term behavior of the monarch butterflies through numerical analysis, given data available in the research literature.

PDF Abstract
No code implementations yet. Submit your code now

Tasks


Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here