Simulating Physical Phenomena by Quantum Networks

31 Aug 2001  ·  R. Somma, G. Ortiz, J. E. Gubernatis, E. Knill, R. Laflamme ·

Physical systems, characterized by an ensemble of interacting elementary constituents, can be represented and studied by different algebras of observables or operators. For example, a fully polarized electronic system can be investigated by means of the algebra generated by the usual fermionic creation and annihilation operators, or by using the algebra of Pauli (spin-1/2) operators. The correspondence between the two algebras is given by the Jordan-Wigner isomorphism. As we previously noted similar one-to-one mappings enable one to represent any physical system in a quantum computer. In this paper we evolve and exploit this fundamental concept in quantum information processing to simulate generic physical phenomena by quantum networks. We give quantum circuits useful for the efficient evaluation of the physical properties (e.g, spectrum of observables or relevant correlation functions) of an arbitrary system with Hamiltonian $H$.

PDF Abstract
No code implementations yet. Submit your code now

Categories


Quantum Physics cond-mat