Simulator-Driven Deceptive Control via Path Integral Approach

27 Aug 2023  ·  Apurva Patil, Mustafa O. Karabag, Takashi Tanaka, Ufuk Topcu ·

We consider a setting where a supervisor delegates an agent to perform a certain control task, while the agent is incentivized to deviate from the given policy to achieve its own goal. In this work, we synthesize the optimal deceptive policies for an agent who attempts to hide its deviations from the supervisor's policy. We study the deception problem in the continuous-state discrete-time stochastic dynamics setting and, using motivations from hypothesis testing theory, formulate a Kullback-Leibler control problem for the synthesis of deceptive policies. This problem can be solved using backward dynamic programming in principle, which suffers from the curse of dimensionality. However, under the assumption of deterministic state dynamics, we show that the optimal deceptive actions can be generated using path integral control. This allows the agent to numerically compute the deceptive actions via Monte Carlo simulations. Since Monte Carlo simulations can be efficiently parallelized, our approach allows the agent to generate deceptive control actions online. We show that the proposed simulation-driven control approach asymptotically converges to the optimal control distribution.

PDF Abstract
No code implementations yet. Submit your code now

Tasks


Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here