Simultaneous Tri-Modal Medical Image Fusion and Super-Resolution using Conditional Diffusion Model

26 Apr 2024  ·  Yushen Xu, Xiaosong Li, Yuchan Jie, Haishu Tan ·

In clinical practice, tri-modal medical image fusion, compared to the existing dual-modal technique, can provide a more comprehensive view of the lesions, aiding physicians in evaluating the disease's shape, location, and biological activity. However, due to the limitations of imaging equipment and considerations for patient safety, the quality of medical images is usually limited, leading to sub-optimal fusion performance, and affecting the depth of image analysis by the physician. Thus, there is an urgent need for a technology that can both enhance image resolution and integrate multi-modal information. Although current image processing methods can effectively address image fusion and super-resolution individually, solving both problems synchronously remains extremely challenging. In this paper, we propose TFS-Diff, a simultaneously realize tri-modal medical image fusion and super-resolution model. Specially, TFS-Diff is based on the diffusion model generation of a random iterative denoising process. We also develop a simple objective function and the proposed fusion super-resolution loss, effectively evaluates the uncertainty in the fusion and ensures the stability of the optimization process. And the channel attention module is proposed to effectively integrate key information from different modalities for clinical diagnosis, avoiding information loss caused by multiple image processing. Extensive experiments on public Harvard datasets show that TFS-Diff significantly surpass the existing state-of-the-art methods in both quantitative and visual evaluations. The source code will be available at GitHub.

PDF Abstract
No code implementations yet. Submit your code now

Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods