Some Insights into the Geometry and Training of Neural Networks

2 May 2016  ·  Ewout van den Berg ·

Neural networks have been successfully used for classification tasks in a rapidly growing number of practical applications. Despite their popularity and widespread use, there are still many aspects of training and classification that are not well understood. In this paper we aim to provide some new insights into training and classification by analyzing neural networks from a feature-space perspective. We review and explain the formation of decision regions and study some of their combinatorial aspects. We place a particular emphasis on the connections between the neural network weight and bias terms and properties of decision boundaries and other regions that exhibit varying levels of classification confidence. We show how the error backpropagates in these regions and emphasize the important role they have in the formation of gradients. These findings expose the connections between scaling of the weight parameters and the density of the training samples. This sheds more light on the vanishing gradient problem, explains the need for regularization, and suggests an approach for subsampling training data to improve performance.

PDF Abstract

Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here