Special Geometry of Euclidean Supersymmetry IV: the local c-map

16 Jul 2015  ·  Cortés Vicente, Dempster Paul, Mohaupt Thomas, Vaughan Owen ·

We consider timelike and spacelike reductions of 4D, N = 2 Minkowskian and Euclidean vector multiplets coupled to supergravity and the maps induced on the scalar geometry. In particular, we investigate (i) the (standard) spatial c-map, (ii) the temporal c-map, which corresponds to the reduction of the Minkowskian theory over time, and (iii) the Euclidean c-map, which corresponds to the reduction of the Euclidean theory over space... In the last two cases we prove that the target manifold is para-quaternionic Kahler. In cases (i) and (ii) we construct two integrable complex structures on the target manifold, one of which belongs to the quaternionic and para-quaternionic structure, respectively. In case (iii) we construct two integrable para-complex structures, one of which belongs to the para-quaternionic structure. In addition we provide a new global construction of the spatial, temporal and Euclidean c-maps, and separately consider a description of the target manifold as a fibre bundle over a projective special Kahler or para-Kahler base. read more

PDF Abstract
No code implementations yet. Submit your code now


High Energy Physics - Theory Differential Geometry