On Complexity of Stability Analysis in Higher-order Ecological Networks through Tensor Decompositions

4 Jan 2024  ·  Anqi Dong, Can Chen ·

Complex ecological networks are often characterized by intricate interactions that extend beyond pairwise relationships. Understanding the stability of higher-order ecological networks is salient for species coexistence, biodiversity, and community persistence. In this article, we present complexity analyses for determining the linear stability of higher-order ecological networks through tensor decompositions. We are interested in the higher-order generalized Lotka-Volterra model, which captures high-order interactions using tensors of varying orders. To efficiently compute Jacobian matrices and thus determine stability in large ecological networks, we exploit various tensor decompositions, including higher-order singular value decomposition, Canonical Polyadic decomposition, and tensor train decomposition, accompanied by in-depth computational and memory complexity analyses. We demonstrate the effectiveness of our framework with numerical examples.

PDF Abstract
No code implementations yet. Submit your code now

Tasks


Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here