Stability of Ferromagnetism in Hubbard Models with Nearly-Flat Bands

10 Jan 2019  ·  Tasaki Hal ·

Whether spin-independent Coulomb interaction in an electron system can be the origin of ferromagnetism has been an open problem for a long time. Recently, a "constructive" approach to this problem has been developed, and the existence of ferromagnetism in the ground states of certain Hubbard models was established rigorously. A special feature of these Hubbard models is that their lowest bands (in the corresponding single-electron problems) are completely flat. Here we study models obtained by adding small but arbitrary translation-invariant perturbation to the hopping Hamiltonian of these flat-band models. The resulting models have nearly-flat lowest bands. We prove that the ferromagnetic state is stable against a single-spin flip provided that Coulomb interaction U is sufficiently large. (It is easily found that the same state is unstable against a single-spin flip if U is small enough.) We also prove upper and lower bounds for the dispersion relation of the lowest energy eigenstate with a single flipped spin, which bounds establish that the model has "healthy" spin-wave excitation. It is notable that the (local) stability of ferromagnetism is proved in non-singular Hubbard models, in which we must overcome competition between the kinetic energy and the Coulomb interaction. We also note that this is one of the very few rigorous and robust results which deal with truly nonperturbative phenomena in many electron systems. The local stability strongly suggests that the Hubbard models with nearly flat bands have ferromagnetic ground states. We believe that the present models can be studied as paradigm models for (insulating) ferromagnetism in itinerant electron systems.

PDF Abstract
No code implementations yet. Submit your code now

Categories


Strongly Correlated Electrons Statistical Mechanics Mathematical Physics Mathematical Physics