Structural Design of Convolutional Neural Networks for Steganalysis

Recent studies have indicated that the architectures of convolutional neural networks (CNNs) tailored for computer vision may not be best suited to image steganalysis. In this letter, we report a CNN architecture that takes into account knowledge of steganalysis. In the detailed architecture, we take absolute values of elements in the feature maps generated from the first convolutional layer to facilitate and improve statistical modeling in the subsequent layers; to prevent overfitting, we constrain the range of data values with the saturation regions of hyperbolic tangent (TanH) at early stages of the networks and reduce the strength of modeling using 1×1 convolutions in deeper layers. Although it learns from only one type of noise residual, the proposed CNN is competitive in terms of detection performance compared with the SRM with ensemble classifiers on the BOSSbase for detecting S-UNIWARD and HILL. The results have implied that well-designed CNNs have the potential to provide a better detection performance in the future.

PDF

Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here