Structured Learning Modulo Theories

7 May 2014  ·  Stefano Teso, Roberto Sebastiani, Andrea Passerini ·

Modelling problems containing a mixture of Boolean and numerical variables is a long-standing interest of Artificial Intelligence. However, performing inference and learning in hybrid domains is a particularly daunting task. The ability to model this kind of domains is crucial in "learning to design" tasks, that is, learning applications where the goal is to learn from examples how to perform automatic {\em de novo} design of novel objects. In this paper we present Structured Learning Modulo Theories, a max-margin approach for learning in hybrid domains based on Satisfiability Modulo Theories, which allows to combine Boolean reasoning and optimization over continuous linear arithmetical constraints. The main idea is to leverage a state-of-the-art generalized Satisfiability Modulo Theory solver for implementing the inference and separation oracles of Structured Output SVMs. We validate our method on artificial and real world scenarios.

PDF Abstract

Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here