Super-Linear Gate and Super-Quadratic Wire Lower Bounds for Depth-Two and Depth-Three Threshold Circuits

24 Nov 2015  ·  Daniel M. Kane, Ryan Williams ·

In order to formally understand the power of neural computing, we first need to crack the frontier of threshold circuits with two and three layers, a regime that has been surprisingly intractable to analyze. We prove the first super-linear gate lower bounds and the first super-quadratic wire lower bounds for depth-two linear threshold circuits with arbitrary weights, and depth-three majority circuits computing an explicit function. $\bullet$ We prove that for all $\epsilon\gg \sqrt{\log(n)/n}$, the linear-time computable Andreev's function cannot be computed on a $(1/2+\epsilon)$-fraction of $n$-bit inputs by depth-two linear threshold circuits of $o(\epsilon^3 n^{3/2}/\log^3 n)$ gates, nor can it be computed with $o(\epsilon^{3} n^{5/2}/\log^{7/2} n)$ wires. This establishes an average-case ``size hierarchy'' for threshold circuits, as Andreev's function is computable by uniform depth-two circuits of $o(n^3)$ linear threshold gates, and by uniform depth-three circuits of $O(n)$ majority gates. $\bullet$ We present a new function in $P$ based on small-biased sets, which we prove cannot be computed by a majority vote of depth-two linear threshold circuits with $o(n^{3/2}/\log^3 n)$ gates, nor with $o(n^{5/2}/\log^{7/2}n)$ wires. $\bullet$ We give tight average-case (gate and wire) complexity results for computing PARITY with depth-two threshold circuits; the answer turns out to be the same as for depth-two majority circuits. The key is a new random restriction lemma for linear threshold functions. Our main analytical tool is the Littlewood-Offord Lemma from additive combinatorics.

PDF Abstract
No code implementations yet. Submit your code now

Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here