Supervised Contrastive Representation Learning: Landscape Analysis with Unconstrained Features

29 Feb 2024  ·  Tina Behnia, Christos Thrampoulidis ·

Recent findings reveal that over-parameterized deep neural networks, trained beyond zero training-error, exhibit a distinctive structural pattern at the final layer, termed as Neural-collapse (NC). These results indicate that the final hidden-layer outputs in such networks display minimal within-class variations over the training set. While existing research extensively investigates this phenomenon under cross-entropy loss, there are fewer studies focusing on its contrastive counterpart, supervised contrastive (SC) loss. Through the lens of NC, this paper employs an analytical approach to study the solutions derived from optimizing the SC loss. We adopt the unconstrained features model (UFM) as a representative proxy for unveiling NC-related phenomena in sufficiently over-parameterized deep networks. We show that, despite the non-convexity of SC loss minimization, all local minima are global minima. Furthermore, the minimizer is unique (up to a rotation). We prove our results by formalizing a tight convex relaxation of the UFM. Finally, through this convex formulation, we delve deeper into characterizing the properties of global solutions under label-imbalanced training data.

PDF Abstract
No code implementations yet. Submit your code now

Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here