Temporal graph models fail to capture global temporal dynamics

27 Sep 2023  ·  Michał Daniluk, Jacek Dąbrowski ·

A recently released Temporal Graph Benchmark is analyzed in the context of Dynamic Link Property Prediction. We outline our observations and propose a trivial optimization-free baseline of "recently popular nodes" outperforming other methods on medium and large-size datasets in the Temporal Graph Benchmark. We propose two measures based on Wasserstein distance which can quantify the strength of short-term and long-term global dynamics of datasets. By analyzing our unexpectedly strong baseline, we show how standard negative sampling evaluation can be unsuitable for datasets with strong temporal dynamics. We also show how simple negative-sampling can lead to model degeneration during training, resulting in impossible to rank, fully saturated predictions of temporal graph networks. We propose improved negative sampling schemes for both training and evaluation and prove their usefulness. We conduct a comparison with a model trained non-contrastively without negative sampling. Our results provide a challenging baseline and indicate that temporal graph network architectures need deep rethinking for usage in problems with significant global dynamics, such as social media, cryptocurrency markets or e-commerce. We open-source the code for baselines, measures and proposed negative sampling schemes.

PDF Abstract

Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here