Paper

Tensor machines for learning target-specific polynomial features

Recent years have demonstrated that using random feature maps can significantly decrease the training and testing times of kernel-based algorithms without significantly lowering their accuracy. Regrettably, because random features are target-agnostic, typically thousands of such features are necessary to achieve acceptable accuracies. In this work, we consider the problem of learning a small number of explicit polynomial features. Our approach, named Tensor Machines, finds a parsimonious set of features by optimizing over the hypothesis class introduced by Kar and Karnick for random feature maps in a target-specific manner. Exploiting a natural connection between polynomials and tensors, we provide bounds on the generalization error of Tensor Machines. Empirically, Tensor Machines behave favorably on several real-world datasets compared to other state-of-the-art techniques for learning polynomial features, and deliver significantly more parsimonious models.

Results in Papers With Code
(↓ scroll down to see all results)