The Effectiveness of Local Updates for Decentralized Learning under Data Heterogeneity

23 Mar 2024  ·  Tongle Wu, Ying Sun ·

We revisit two fundamental decentralized optimization methods, Decentralized Gradient Tracking (DGT) and Decentralized Gradient Descent (DGD), with multiple local updates. We consider two settings and demonstrate that incorporating $K > 1$ local update steps can reduce communication complexity. Specifically, for $\mu$-strongly convex and $L$-smooth loss functions, we proved that local DGT achieves communication complexity $\tilde{\mathcal{O}} \Big(\frac{L}{\mu K} + \frac{\delta}{\mu (1 - \rho)} + \frac{\rho }{(1 - \rho)^2} \cdot \frac{L+ \delta}{\mu}\Big)$, where $\rho$ measures the network connectivity and $\delta$ measures the second-order heterogeneity of the local loss. Our result reveals the tradeoff between communication and computation and shows increasing $K$ can effectively reduce communication costs when the data heterogeneity is low and the network is well-connected. We then consider the over-parameterization regime where the local losses share the same minimums, we proved that employing local updates in DGD, even without gradient correction, can yield a similar effect as DGT in reducing communication complexity. Numerical experiments validate our theoretical results.

PDF Abstract
No code implementations yet. Submit your code now

Tasks


Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here