The particle track reconstruction based on deep learning neural networks

7 Dec 2018  ·  Dmitriy Baranov, Sergey Mitsyn, Pavel Goncharov, Gennady Ososkov ·

One of the most important problems of data processing in high energy and nuclear physics is the event reconstruction. Its main part is the track reconstruction procedure which consists in looking for all tracks that elementary particles leave when they pass through a detector among a huge number of points, so-called hits, produced when flying particles fire detector coordinate planes. Unfortunately, the tracking is seriously impeded by the famous shortcoming of multiwired, strip in GEM detectors due to the appearance in them a lot of fake hits caused by extra spurious crossings of fired strips. Since the number of those fakes is several orders of magnitude greater than for true hits, one faces with the quite serious difficulty to unravel possible track-candidates via true hits ignoring fakes. On the basis of our previous two-stage approach based on hits preprocessing using directed K-d tree search followed by a deep neural classifier we introduce here two new tracking algorithms. Both algorithms combine those two stages in one while using different types of deep neural nets. We show that both proposed deep networks do not require any special preprocessing stage, are more accurate, faster and can be easier parallelized. Preliminary results of our new approaches for simulated events are presented.

PDF Abstract
No code implementations yet. Submit your code now

Tasks


Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here