The Preliminary Evaluation of a Hypervisor-based Virtualization Mechanism for Intel Optane DC Persistent Memory Module

28 Jul 2019  ·  Takahiro Hirofuchi, Ryousei Takano ·

Non-volatile memory (NVM) technologies, being accessible in the same manner as DRAM, are considered indispensable for expanding main memory capacities. Intel Optane DCPMM is a long-awaited product that drastically increases main memory capacities. However, a substantial performance gap exists between DRAM and DCPMM. In our experiments, the read/write latencies of DCPMM were 400% and 407% higher than those of DRAM, respectively. The read/write bandwidths were 37% and 8% of those of DRAM. This performance gap in main memory presents a new challenge to researchers; we need a new system software technology supporting emerging hybrid memory architecture. In this paper, we present RAMinate, a hypervisor-based virtualization mechanism for hybrid memory systems, and a key technology to address the performance gap in main memory systems. It provides great flexibility in memory management and maximizes the performance of virtual machines (VMs) by dynamically optimizing memory mappings. Through experiments, we confirmed that even though a VM has only 1% of DRAM in its RAM, the performance degradation of the VM was drastically alleviated by memory mapping optimization. The elapsed time to finish the build of Linux Kernel in the VM was 557 seconds, which was only 13% increase from the 100% DRAM case (i.e., 495 seconds). When the optimization mechanism was disabled, the elapsed time increased to 624 seconds (i.e. 26% increase from the 100% DRAM case).

PDF Abstract

Categories


Operating Systems Hardware Architecture Performance D.4; B.3

Datasets


  Add Datasets introduced or used in this paper