The PRIMPing Routine -- Tiling through Proximal Alternating Linearized Minimization

17 Jun 2019  ·  Sibylle Hess, Katharina Morik, Nico Piatkowski ·

Mining and exploring databases should provide users with knowledge and new insights. Tiles of data strive to unveil true underlying structure and distinguish valuable information from various kinds of noise. We propose a novel Boolean matrix factorization algorithm to solve the tiling problem, based on recent results from optimization theory. In contrast to existing work, the new algorithm minimizes the description length of the resulting factorization. This approach is well known for model selection and data compression, but not for finding suitable factorizations via numerical optimization. We demonstrate the superior robustness of the new approach in the presence of several kinds of noise and types of underlying structure. Moreover, our general framework can work with any cost measure having a suitable real-valued relaxation. Thereby, no convexity assumptions have to be met. The experimental results on synthetic data and image data show that the new method identifies interpretable patterns which explain the data almost always better than the competing algorithms.

PDF Abstract

Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here